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Abstract

This paper presents an abandoned item and illegally

parked vehicle detection method for single static camera

video surveillance applications. By processing the input

video at different frame rates, two backgrounds are con-

structed; one for short-term and another for long-term.

Each of these backgrounds is defined as a mixture of Gaus-

sian models, which are adapted using online Bayesian up-

date. Two binary foreground maps are estimated by com-

paring the current frame with the backgrounds, and motion

statistics are aggregated in a likelihood image by applying

a set of heuristics to the foreground maps. Likelihood im-

age is then used to differentiate between the pixels that be-

long to moving objects, temporarily static regions and scene

background. Depending on the application, the temporary

static regions indicate abandoned items, illegally parked ve-

hicles, objects removed from the scene, etc. The presented

pixel-wise method does not require object tracking, thus its

performance is not upper-bounded to error prone detec-

tion and correspondence tasks that usually fail for crowded

scenes. It accurately segments objects even if they are fully

occluded. It can also be effectively implemented on a par-

allel processing architecture.

1. Introduction

Significant amount of effort has been devoted to track-

ing based abandoned item detection [1, 2, 3, 4, 5] in video

surveillance. Most of these methods are designed for a mul-

tiple, overlapping field-of-view camera system that is cali-

brated onto a ground plane. They assume the scene is not

crowded, occlusions are minimal, and moving objects can

be accurately initialized using only motion information. Be-

sides, they require solving a harder problem of object track-

ing and object detection as an intermediate step.

There have been similar work [6, 7] for single camera

setups. In [7] a gradient-based method is applied to the

static foreground regions to detect the type of the static re-

gions by analyzing the change in the amount of edge energy

associated with the boundaries of the static foreground re-

gion between the current frame and the background image.

The static region is an abandoned (removed) object if there

are significantly more (less) edges. This algorithm requires

precise boundaries and fails in case of cluttered multimodal

scenes.

A common solution to handle multimodal backgrounds

and compensate for illumination variances is to use mixture

models. In [8] an expectation maximization (EM) based on-

line adaptation method to learn the mixture of Gaussians is

proposed. A fixed number of models are updated at each

pixel using a set of constant learning parameters. Online

EM update causes a weak model to be dissolved into a

dominant one in case the weak and dominant models have

similar mean values and the variance of the weak model is

much larger than the dominant model. To solve this prob-

lem, Porikli and Tuzel [9] presented an online Bayesian up-

date mechanism. This method is shown to generate accurate

models while enabling assignment of different number of

models at every pixel depending on the local intensity dis-

tributions. There exists a class of problems that traditional

single foreground/background detection methods still can-

not solve. For instance, objects left behind in public places,

such as suitcases, packages, etc. do not fall into either of

the two categories. They are static; therefore, they should

be labeled as background. On the other hand, they should

not be ignored as they do not belong to the original scene

background.

Here, we present a method that use multiple backgrounds

and does not require object tracking. The main motiva-

tion is that the recently changed pixels that stay static af-

ter they changed can be distinguished from the actual back-

ground pixels and the pixels corresponding to the moving

regions by analyzing the intensity variance in different tem-

poral scales. We employ the mixture of Gaussian models

and update them online using a Bayesian update mecha-

nism. We compute long-term and short-term foreground

maps from these background models. We compare the fore-

ground maps, and update a motion image that keeps the

motion statistics. These statistics are then used to differen-

tiate between the pixels that belong to the moving objects,
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Figure 1. Long-term and short-term backgrounds are learned by

processing video at different frame rates.

the temporarily static image areas, and the perpetually static

parts of the background scene. Depending on the applica-

tion, the temporary static areas (of the recently changed pix-

els) indicate abandoned items, illegally parked vehicles, ob-

jects removed from the scene, etc. The background models

have identical initial parameters, thus, they require minimal

fine tuning in the setup stage. Our method can also be ef-

fectively implemented on a parallel processing architecture.

2. Two Backgrounds

To detect an abandoned item (or an illegally parked ve-

hicle) we need to know how it alters the temporal and spa-

tial statistics of the video data. We built our method on the

observation that an abandoned item was not a part of the

original scene, it was brought into the scene not that long

ago, and it stayed still after it was left. In other words, it

can be considered as a temporarily static object which was

not there before. This means that by learning the prolonged

scene background and the moving foreground regions, we

can hypothesize whether a pixel corresponds to an aban-

doned item or not.

The prolonged background can be determined by main-

taining a statistical background model that captures the

most consistent modes of the color distribution of each pixel

in extended durations of time. From this prolonged back-

ground, the foreground pixels that do not fit into the sta-

tistical models are obtained. Depending on the adaptation

rate of the prolonged background, the regions correspond-

ing to the temporary static objects, e.g. abandoned items,

can be mistaken as a part of the background (faster adap-

tation rates) or grouped with the moving regions (slower

adaptation rates). A single prolonged background is insuffi-

cient to separate the temporarily static pixels from the pro-

longed static pixels.

As opposed to the single background approaches, we

use two backgrounds to learn both the prolonged (long-

term) background BL and the temporarily static (short-

term) background BS . It is possible to improve the temporal

granularity by employing multiple backgrounds at different
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Figure 2. Hypotheses on the long- and short-term foregrounds.

temporal scales. Using the short-term background, we de-

termine the short-term foreground pixels that correspond to

the moving objects in the scene. The pixels of the objects

ceased moving are rapidly blended into the short-term back-

ground.

Each of the backgrounds is defined as a mixture of Gaus-

sians models. We formulate each pixel as layers of 3D mul-

tivariate Gaussians. Each layer corresponds to a different

appearance of the pixel. We perform our operations on the

RGB color space. We apply a Bayesian update mechanism.

At each update, at most one layer is updated with the cur-

rent observation. This assures the minimum overlap over

layers. We also determine how many layers are necessary

for each pixel and use only those layers during the fore-

ground segmentation phase. This is performed with an em-

bedded confidence score. Both of these backgrounds have

identical initial parameters; the initial mean and variance of

the marginal posterior distribution, the number of the prior

measurements, the degrees of freedom, and the scale ma-

trix, etc.

Construction of the backgrounds is illustrated in Fig-

ure 1. The short-term background is updated at a higher

frequency than the long-term background. At a higher fre-

quency, the short-term background learns the underlying

distribution faster, thus, the changes are blended rapidly. In

contrast, the long-term background is more resistant against

the temporary changes.

At every frame, we estimate the long- and short-term

foregrounds by comparing the current frame I by the back-

ground models BL and BS . We obtain two binary fore-

ground maps FL and FS where F (x, y) = 1 indicates

the pixel (x, y) is changed. The long-term foreground FL

shows the variations in the scene that were not there be-

fore including the moving objects, temporarily static ob-

jects, moving shadows, noise, and illumination changes that

the background models fail to adapt. The short-term fore-

ground FS contains the moving objects, noise, etc. How-

ever, it does not show the temporarily static regions that we

want to detect.

Depending on the foreground mask values, we formulate
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Figure 3. First row: t = 350. Second row: t = 630. The long-term foreground FL captures moving objects and temporarily static regions.

The short-term foreground FS captures only moving objects. The likelihood L gets greater as the object stays longer.

the following hypotheses as shown in Figure 2:

1. FL(x, y) = 1 ∧ FS(x, y) = 1; (x, y) is a pixel that

may correspond to a moving object since I(x, y) does

not fit any backgrounds.

2. FL(x, y) = 1 ∧ FS(x, y) = 0; (x, y) is a pixel that

may correspond to an abandoned item.

3. FL(x, y) = 0 ∧ FS(x, y) = 1; (x, y) is a scene back-

ground pixel that was occluded before.

4. FL(x, y) = 0 ∧ FS(x, y) = 0; (x, y) is a scene

background pixel since its value I(x, y) fits both back-

grounds BL and BS .

The short-term background adapts itself to the relatively

consistent changes, but it does not learn temporary color

changes due to motion of the objects. Thus, such a pixel

is marked as FS(x, y) = 1 in the short-term foreground.

Since the long-term background is updated less frequently,

a temporary change cannot alter the long-term background.

The pixel is also marked as FL(x, y) = 1 in the long-term

foreground mask.

In case a pixel that was a part of the scene background is

occluded for sometime and then uncovered, the long-term

foreground will still be zero, FL(x, y) = 0. The long-term

background is updated less frequently hence it is not respon-

sive enough to adapt to the new color during the occlusion.

Yet, the short-term background is responsive and adapts it-

self during the occlusion, which causes FS(x, y) = 1.

A stationary pixel will be blended into the short-term

background i.e. FS(x, y) = 0 if it stays stationary long

enough. Assuming this duration is not prolonged to blend

the pixel in the scene background. As a result, the long-term

foreground will be one, FL(x, y) = 1. This is expected for

the left behind items.

If no change is observed in any backgrounds, i.e.

FL(x, y) = 0 and FS(x, y) = 0, the pixel is considered

as a part of the static scene. This case requires the pixel

to have the same color distribution for prolonged periods

of time. Sample foreground maps showing some of these

cases is given in Figure 3.

We aggregate the frame-wise motion statistics into a

likelihood image L(x, y) by updating the pixel-wise values

at each frame as

L(x, y)=















L(x, y) + 1 FL(x, y) = 1 ∧ FS(x, y) = 0
L(x, y) − k FL(x, y) 6= 1 ∨ FS(x, y) 6= 0
maxe L(x, y) > maxe

0 L(x, y) < 0

where maxe and k are positive numbers. The likelihood

image enables removing noise in the detection process. It

also controls the minimum time required to assign a static

pixel as an abandoned item. For each pixel, the likelihood

image collects the evidence of being an abandoned item.

Whenever this evidence elevates up to a preset level, i.e.

L(x, y) > maxe, we mark the pixel as an abandoned item

pixel and raise an alarm flag. The evidence threshold maxe

is defined in term of the number of frames and it can be

chosen depending on the desired responsiveness and noise

characteristics of the system. In case the foreground detec-

tion process produces noisy results, higher values of maxe

should be preferred. High values of maxe decrease the false

alarm rate. On the other hand, higher the preset level gets

longer the minimum duration a pixel takes to be classified

as a part of an abandoned item.

The decay parameter k governs how fast the likelihood

should decrease if no evidence is provided. It also deter-

mines the responsiveness of the system in case the aban-

doned item is removed, in which case the pixels returns their

original background values before the detection, or blended

into the scene background. To set the alarm flag off imme-
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diately after the removal of abandoned object, the value of

decay constant should have a large value. The decay param-

eter can be set proportional to the evidence threshold. This

means only a single parameter is needed for the likelihood

image.

Neither of the backgrounds and their mixture models de-

pends on the likelihood image preset values. This makes

the detection robust against the variations of the evidence

and decay parameters that can be set comfortably without

struggling to fine tune the overall system.

3. Foreground Detection

Our background model [9] is most similar to adaptive

mixture models [8] but instead of mixture of Gaussian dis-

tributions, we define each pixel as layers of 3D multivariate

Gaussians. Each layer corresponds to a different appearance

of the pixel. We perform our operations in the RGB color

space. Using Bayesian update, we are not estimating the

mean and variance of the layer, but the probability distribu-

tions of mean and variance. We can extract statistical infor-

mation regarding to these parameters from the distribution

functions. We use the expectations of mean and variance for

change detection, and variance of the mean for confidence.

Bayesian update algorithm maintains the multimodailty of

the background model.

Learned background statistics is used to detect the

changed regions of the scene. We determine how many

layers are necessary for each pixel and use only those lay-

ers during foreground segmentation phase. The number of

layers required to represent a pixel is not known before-

hand so background is initialized with more layers than

needed. Usually we select three to five layers. In more

dynamic scenes more layers are required. Using the confi-

dence scores we determine how many layers are significant

for each pixel. As we observe new samples for each pixel

we update the parameters for our background model. At

each update, at most one layer is updated with the current

observation. This assures the minimum overlap over layers.

We order the layers according to confidence score and se-

lect the layers having confidence value greater than the layer

threshold. We refer to these layers as confident layers. We

start the update mechanism from the most confident layer.

If the observed sample is inside the 2.5σ of the layer mean,

which corresponds to 99% confidence interval of the cur-

rent model, parameters of the model are updated. Lower

confidence models are not updated. Details can be found

in [9].

4. Experimental Results

To test the proposed method, we used several public

datasets from PETS 2006 [10], i-LIDS [11], and Advanced

Technology Center, Amagasaki. The total number of tested
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Figure 4. Detected events for i-LIDS dataset.

sequences were 32. The data included different resolutions,

180×144, 320×240, 640×480, and 720×576. The scenar-

ios ranged from lunch rooms to underground train stations.

Half of these sequences depict scenes that are not crowded.

Other sequences have more complex scenarios with mul-

tiple people sitting, standing, walking, etc. There are se-

quences that have parked vehicles. In all sequences people

walk at variable speeds. The abandoned items are left for

varying durations; from 10 seconds to 2 minutes. Most se-

quences contain small (10 × 10) abandoned items. Some

sequences have multiple abandoned items.

We grouped the similar sequences into the same set and

reported the result for several sets. The sets AB-Easy, AB-

Medium, and AB-Hard, which are included in i-LIDS Chal-

lenge, are recorded in an underground train station. Set

PETS is a large closed space platform with restaurants. Sets

ATC-1 and ATC-2 are recorded from a wide angle camera

of a cafeteria. Sets ATC-3 and ATC-4 are different cameras

from a lunch room. Set ATC-5 is a waiting lounge. Since

the proposed method is a pixel-wise scheme, it is not diffi-

cult to set detection areas in the initialization time. We man-

ually marked the platform in AB-easy, AB-medium, and

AB-hard sets, the waiting area in PETS 2006 set, and the

illegal parking spots in PV-easy, PV-medium, and PV-hard

sets. For the ATC sets, all of the image area is used as the

detection area. For the i-LIDS sets, we replaced the be-

ginning parts of the video sequences with 4 frames of the

empty platform.

For all results, we updated the short-term background at

30 fps, and the long-term background at 1 fps. Our tests

show that the processing rates can be set to even much lower

values as long as both short and long term rates are propor-

tionally scaled i.e. the short-term rate to 1 fps and the long-

term rate to 2 frame-per-minutes (30 times slower). We set

the evidence threshold maxe 50 500 depending on the de-

sired responsiveness time. We used k = 1 as the decay

parameter.

Figure 4 shows the detection results for the i-LIDS
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datasets. We reported the performance scores of all sets

in Table 1. Tall is the total number of frames in a set and

Tevent is the duration of the event in terms of the number

of frames on Table 1. We measure the duration right af-

ter an item is being left behind. However, it is also possi-

ble to measure the duration after the person moved away or

after some preset waiting time. Events indicates the num-

ber of left behind objects (for PV-medium, the number of

the illegally parked vehicles). TD means the correctly de-

tected objects. A detection is considered to be both spatially

and temporally continuous. In other words, there might be

multiple detections for a frame if the objects are spatially

disconnected. FA shows the falsely detected objects. Ttrue

and Tfalse is the duration of the correct and false detections.

Tmiss is the duration that a left behind item could not be de-

tected. Since we start an event as soon as an object is left,

this score does not consider any waiting time. This means

that we overestimate our miss rate.

As our results show, we successfully detected all aban-

doned items while achieving a very low false alarm rate.

Our method performed satisfactory when the initial frame

showed the actual static background. The detection areas

have not included any people at the initialization time in the

ATC sets, thus the proposed method accurately learned the

uncontaminated backgrounds. This is also true for the PV

and AB-easy sets. However, the AB-medium and AB-hard

sets contained several people, some of who were sitting, in

the first frames. This resulted in false detections when those

people moved away. Since the background models eventu-

ally learns the statistically dominant color values, such false

alarms should not occur in the long run due to the fact that

the background will be more visible than the people. In

other words, the ratio of the false alarms should decrease

in time. We do not learn the color distribution of the aban-

doned items items (or parked vehicles), thus, the proposed

method can detect them even if they are occluded. As long

as the occluding object, which may be a person who moves

between the abandoned item and the camera, has different

color than the long-term background, the long-term fore-

ground will show the abandoned item.

Representative detection results are given in Figures 5-

6. As visible, none of the moving objects, moving shad-

ows, people that are stationary in shorter durations was

falsely detected. Besides, there are no ghost false detec-

tions due the inaccurate blending of the abandoned items in

the long-term background. Thanks to the Bayesian update,

the changing illumination conditions as in PV-medium are

properly adapted in the backgrounds.

Another advantage of this method is that the alarm is

immediately set of as soon as the abandoned item is re-

moved from its previous position. Although we does not

know whether the person who left the object is moved away

from the object or not, we consider this property as a su-

periority over the tracking based approaches that require a

decision net of heuristic rules and context depended priors

to detect such event.

One shortcoming is that it cannot discriminate the differ-

ent types of objects, e.g. a person who is stationary for a

long time can be detected as a left behind item. This can be,

however, an indication of a suspicious behavior as it is not

common. To determine object types and reduce the false

alarm rate, object classifiers, i.e. a human or a vehicle de-

tector, can be used. Since such classifiers are only for veri-

fication purposes, their computation time is negligible.

5. Conclusions

We present a computationally efficient and robust

method to detect abandoned items and illegally parked ve-

hicles. This method uses two backgrounds that are learned

by processing the input video at different frame rates. This

method does not depend on tracking. Therefore, it is not

restricted to predefined event heuristics that require detec-

tion, tracking and identification of every single object in the

scene. Unlike the motion vector analysis based approaches,

it accurately detects the boundary of abandoned items even

if they are occluded. Since it employs pixel-wise opera-

tions, it can be implemented for parallel processors.
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Table 1. Detection Results

Sets Tall Tevent Events TD FA Ttrue Tmiss Tfalse

AB-easy 4850 2850 1 1 0 2220 630 0

AB-med. 4800 3000 1 1 1 1730 1270 970

AB-hard 5200 3400 1 1 1 2230 1170 350

PV-med. 3270 1920 1 1 0 1630 290 20

PETS 3000 1200 1 1 0 950 250 10

ATC-1 6600 3400 6 6 0 2350 1100 50

ATC-2 13500 6500 18 18 0 4740 1850 40

ATC-3 5700 2400 5 5 0 1390 1010 0

ATC-4 3700 2000 6 6 1 1300 700 350

ATC-5 9500 5350 11 10 2 3160 2150 420

1 500 750 1250 1500

2000 2300 2350 2500 3000
Figure 5. Test sequence PV-medium from AVSS 2007 (Courtesy of i-LIDS). A challenge in this video is the rapidly changing illumination

conditions that cause dark shadows.

1 1170 1750 2350 3000

3600 4130 4230 4300 4800
Figure 6. Test sequence AB-easy from AVSS 2007 (Courtesy of i-LIDS). The alarm sets of immediately when the item is removed even

though the luggage was stationary 2000 frames (180× 144).
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